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AbstnlC:t-Two forms of the conventional procedure for describing material symmetry are presented
in the context of the mechanics of materials with memory, in which the stress matrix at time t is
assumed to be a functional of the history of the deformation gradient matrix in the time interval
[to, t]' In one of these forms the particle considered is identified by its position at time to and in the
other by its position at time t. This procedure is contrasted with that proposed by Noll in 1958.
Unlike the conventional procedure, in that of Noll the concepts of material symmetry and material
frame indilTerence are inextricably intertwined. Moreover, it does not have general applicability to
areas of continuum physics other than mechanics, as does the conventional procedure.

INTRODUCTION

In this paper two ways of giving mathematical expression to material symmetry are
compared. One of these has been traditionally used in continuum mechanics and in
continuum theories in crystal physics. In the context of continuum-mechanical theories of
materials with memory, in which the Cauchy stress at time t is assumed to be a functional of
the deformation gradient history in the time interval [to. tJ, it was used by Green and
Rivlin[lJ. It is formulated in this context in Sections 2 and 3. In Section 2 the particle
considered is identified by its position at time to, and in Section 3 by its position at time t. In
both cases the physical concept of material symmetry is translated directly into a restriction
on the constitutive functional. In Sections 4 and 5 it is shown, by two different methods, that
if the particle considered is identified by its position at time t and the material considered is
isotropic, then the Cauchy stress at time t may be expressed as an isotropic functional of the
history of the Cauchy strain referred to the configuration at time t.

Another procedure for giving mathematical expression to material symmetry, again in
the context of the continuum mechanics of materials with memory, was introduced by
Noll[2J in 1958 and has been reproduced extensively in the secondary literature since that
time. In Noll's procedure, which is described in Section 6, an "isotropy group" is defined as
the group of transformations for which a particular invariance condition (eqn (57) below) is
satisfied by the constitutive functional. Although this is a necessary condition for the group
of transformations to describe the material symmetry, it is not a sufficient condition.
Sufficiency is obtained only if the constitutive functional is also required to satisfy material
frame indifference. Then the restriction on the constitutive functional which is obtained is
identical with that obtained directly by the traditional procedure.

We see that in Noll's procedure the concepts of material symmetry and material frame
indifference are intertwined, while in the traditional procedure they remain distinct concepts.
We illustrate the effect of this in Section 7 by considering the manner in which material
symmetry restrictions can be introduced into the constitutive equation for the heat flux
vector in a rigid body in which temperature gradients exist. It is seen that while the
traditional procedure provides appropriate restrictions on the constitutive equations, Noll's
procedure is inapplicable.

In Ref. [2J Noll uses his invariance condition (eqn (57) below) to distinguish between
solids and fluids. He supposes that for solids the isotropy group is either the full orthogonal
group or a sub-group of it; for fluids it is the full unimodular group. However, it is seen in

tThis paper was written while R.S.R. was a visting professor at the University of Delaware. He wishes to
express his gratitude for its hospitality.
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Section 6 that Noll's conclusions are incorrect and would, indeed, disallow the spatial
description of the deformation discussed in Sections 4 and 5 for an isotropic solid.

2. MATERIAL DESCRIPTION OF MATERIAL SYMMETRY

We consider a body of homogeneous material. We suppose that from it two congruent
bodies, Band ti, are cut, as shown schematically in Fig. l(a). We suppose that the position
and spatial orientations of the two bodies are maintained and that x and x are two
rectangular Cartesian coordinate systems correspondingly located with respect to bodies B
and ti, respectively, as shown in Fig. l(b). We denote the origins of the systems x and xby 0
and 0, respectively, and let c = Ile;1I be the column matrix formed by the components of the
vector 00 in the coordinate system x.

We now suppose that the bodies Band ti are subjected to congruent deformations in the
time interval [to, tJ. Let P and Pbe generic particles in bodies Band ti. Let X (= IIXdl) and
x(r) (= Ilxj(r)ll) be the vector positions of P at times to and r, respectively, referred to system
x. Similarly, let X(= IIXjl!) and x(r) (= IIXj(r)!D be the vector positions ofPat times to and r.
respectively, referred to system x. Let X (= IIXjl!) and x(r) ( = Ilxj(r)!D be the vector
positions of P referred to coordinate systems x. Then Xand X, and i(r) and x(r) are related
by transformations of the form

x = SX+c, X(r) = Sx(r)+c ( 1)

where S is a constant orthogonal matrix. Matrix S is proper orthogonal if x and xare both
right-handed or both left-handed; otherwise S is improper orthogonal.

We define the deformation gradient matrix g(r) at P at time r referred to system x, by

(2)

We denote the deformation gradient matrices at Pat time r, referred to the systems xand x.
by g(r) and g(r) respectively, and define them by

g(r) = II 9jj(r) II = Ilax;(r)/aXjll
g(r) = II 9ij(r) II = lI ax;(r)/aXj ll·

(3)
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Fig. I. (a) Congruent domains in a homogeneous block. (b) Congruent bodies cut from a
homogeneous block.
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Then from eqns (1) we obtain

where the dagger denotes the transpose.
We suppose that the deformation of body B is described in system x by

X{t) = rex, f).
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(4)

(5)

Since it has been assumed that the deformations of bodies Band Bare congruent, it follows
that the deformation of body B may be described in system x by

i{t) = rex, f). (6)

We make the constitutive assumption that the Cauchy stress at a particle of the material
at time t is determined by the history of the deformation gradient matrix at the particle in the
time interval [to, t]. Let aft) (= II(Tij{t)") and d(t) (= IIUlj(t) I!> be the Cauchy stress matrices at
P and P respectively at time t, referred to coordinate systems x and xrespectively. Then

aft) = F{g('r)}, aft) =F{g(t)} (7)

and we note that the functionals F and Ii' are, in general, different. If and only if they are the
same, the coordinate systems x and xare said to be equivalent. Then eqns (7) become

aCt) = F{g(t)}, d(t) = F{g(t)}. (8)

Ifaft) (= II Gij(t)ID denotes the Cauchy stress matrix at Pat time t referred to coordinate
system x, then

aft) = F{g(t)}.

From eqns (1) it follows that aft) and d(t) are related by

(9)

(10)

We now suppose that P and Pare corresponding particles of bodies Band B; Le.

Then, from eqns (2) and (3)

x=x, X(t) = x(r). (11)

and from eqns (12) and (4)

get) =get)

get) = Sg(t)S'.

(12)

(13)

With eqns (12) and (13), it follows from eqns (7h, (9) and (10) that if P and Pare
corresponding particles of Band B

If the coordinate systems x and x are equivalent, then eqn (14) becomes

SF{g('r)}S' = F{Sg(t)St}.

(14)

(15)
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If two rectangular Cartesian coordinate systems are each equivalent to x, they are
equivalent to each other. Let {x} denote the set of all equivalent coordinate systems which
are equivalent to x and let {S} denote the set of all transformations which relate pairs of
coordinate systems in this set. Then {S} forms a group of transformations which describes
the symmetry of the material. This group is evidently the full orthogonal group or a sub­
group of it. Relation (15) must, of course, be satisfied for all, S in this group.

We now introduce the restriction imposed on F by the assumption that if an arbitrary
time-dependent rigid rotation, which leaves the configuration at time to unchanged, is
superposed on the assumed deformation, the Cauchy stress is rotated by the amount of thiS
rotation at time t. This is sometimes called (erroneously) the Principle of Material Frame
Indifference. It implies that for body B, functional F must satisfy the relation

F{R(r)g(r)} = R(t)F{g(r)}Rt(t) (16)

for all proper orthogonal matrices R(r) such that R{to) = I. This implicit restriction on the
form of F can be made explicit. We find that

a(t) = F{g(r)} =g(t)G{C(r)}gt(t) (17)

where C(r) is the Cauchy strain matrix at P at time r, referred to the configuration at time to,
defined by

(18)

Replacing g(r) by Sg(r)St in eqns (17) and (18) we obtain

(19)

With eqn (15) we obtain from eqns (17) and (19)

(20)

This relation must be satisfied for all S in the group of transformations (S}.

3. SPATIAL DESCRIPTION OF MATERIAL SYMMETRY

The deformation of bodies Band B can also be described by the dependence of the
vector positions at time r of the generic particles P and P, referred to the coordinate systems
x and x respectively, on their vector positions at time t

x(r) = f*[x(t),r] = f(X,r),

x(r) = f*[x(t), r] = f(X, r).
(21)

We call this description of the deformation history the spatial description. If the coordinate
systems x and xare equivalent, then

where

and

a(t) = F*{gr(r)},

_ Iloxl(r)11
gr(r) = oxit)

(22)

(23)

F*{gr(r)} = F{g(r)}. (24)
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From eqn (1h it follows that

where

. IloXlr)11gr(r) = oxj(t) .

From eqn (22)1 it follows that

aCt) = F*{gr(r)}.

If P and P are corresponding points in Band jj

ir(r) = gr(r).

It follows from eqns (10), (22h, (25), (27) and (28) that

SF*{gr(r)}St = F*{Sgr(r)St}.
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(25)

(26)

(27)

(28)

(29)

This relation must, ofcourse, be satisfied for all transformations ofgroup {S} describing the
material symmetry. It provides the spatial form of the material symmetry condition
corresponding to the material form, eqn (15). If group {S} is the full or proper orthogonal
group then the material is isotropic.

We now introduce the restriction imposed on F* by the assumption that if an arbitrary
time-dependent rigid rotation, which leaves the configuration at time to unchanged, is
superposed on the assumed deformation, then the Cauchy stress at time t is changed by the
amount of this rotation at time t. We have seen in Section 2 that this implies that F{g(r)}
must be expressible in the form of eqn (17). This, in tum, implies a restriction on the form of
F*{gr(r)} which can be easily obtained.

From eqn (24) we find, by using the relation

g(r) = gr(r)gr- I (to)

that

F*{gr(r)} = F{gr(r)gr- 1(to)}.

From eqns (18) and (30), we obtain

where

Cr(r) = g:(r)gr(r).

Using eqns (30)-(32), we obtain from eqns (17) and (24)

(30)

(31)

(32)

(33)

(34)

The restriction imposed on functional G by the material symmetry restriction, eqn (29), is
readily obtained as

SG{Br(r)}St = G{SBr(r)St} (35)
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for transfonnations of group {S} describing the symmetry of the material. From eqn (32) we
see that this is the same restriction as eqn (15).

4, ISOTROPIC MATERIALS

If the material considered is isotropic the group of transfonnations {S} is the full or
proper orthogonal group. We define the matrices n« (IX = 0, 1,2, ...) by

no =1. (36)

It has been shown by Wineman and Pipkin[3] that for an isotropic material the functional G
must be expressible in the fonn

(37)

where La are isotropic linear operators which are themselves functionals of tr n«
(IX = 1, ... ,6) with t« e [to, t]'

Using eqn (32) and the relation

we obtain

where

n« = [gt-l(to)]fn:gt-l(to)

tr n« = tr n:ct- 1(to)

(38)

(39)

(40)

Introducing these results into eqn (34), using eqns (37) and (38), and bearing in mind that,
from the definition of a functional, Ct-

1(to) is a functional of Ct(t), we find that a(t) must be
expressible as an isotropic functional of Ct(t)

(41)

where G* satisfies the relation

(42)

for aU orthogonal S.
It is evide~t that the mere fact that we choose to use a spatial description of the

defonnation, rather than a material description, in the constitutive equation for the Cauchy
stress in an isotropic material, places no restriction on the rheological character of the
material considered. We will see in Section 6 that this disagrees with the conclusions of
Noll[2].

5. ISOTROPIC MATERIALS-AN ALTERNATIVE APPROACH

We have seen that in our constitutive assumption we may employ either a material or a
spatial description of the defonnation gradient history

(43)

Ifwhen an arbitrary time-dependent rigid rotation, which leaves the configuration at time to
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unchanged, is superposed on the assumed deformation, the Cauchy stress is rotated by the
amount of this rotation at time t, then the functional F* in eqn (43) must satisfy the relation

R(t)F*{g,(r)}Rt(t) = F*{R(r)g,(r)Rt(r)) (44)

for all proper orthogonal matrices R(r) such that R(t0) = I. If the material is isotropic then
(cf. eqn (29))

(45)

for all (time-independent) orthogonal matrices S. Replacing g,(r) in eqn (45) by
R(r)g,(r)Rt(t), we obtain

With eqn (44) this yields

T(t)F*{g,(r)}Tt(t) = F*{T(r)g,(r)T\t)}

where

T(r) = SR(r).

(46)

(47)

(48)

We note that T(r) is an arbitrary time-dependent orthogonal matrix, which is not necessarily
the unit matrix for either r = to or t.

If T(t) = I, then condition (47) yields

F*{g,(r)} = F*{T(r)g,(r)}.

It can easily be shown that this implies that aCt) must be expressible in the form

aCt) = F*{gl(r)} = G*{C,(r)}

where

C,(r) = g;(r)gr(r).

(49)

(50)

(51 )

Conversely, if F* is expressible in the form of eqn (50) condition (49) is satisfied. Further,
from eqns (45), (50) and (51) it follows that G*{C,(r)} must satisfy the relation

SG*{C,(r)}st = G*{SC,(r)St} (52)

for all constant orthogonal S.
We conclude that if in an isotropic material superposition on the assumed deformation

of an arbitrary time-dependent rigid rotation causes the stress aCt) to be rotated by the
amount of this rotation at time t, then aCt) must be expressible in the form of eqn (50) where
G*{C,(r)} satisfies relation (52).

Expression (50) for aCt) can also be obtained from a result given by Truesdell and Noll
[4, eqn (31.10)]. They show that for an isotropic material aCt) must be expressible in the form

aCt) = G{Cr(r),c(t)}

where c(t) is the Finger strain at time t defined by

c(t) = g(t)gt(t).

(53)

(54)
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Since g(t) = gr- 1 (to) we obtain from eqns (54) and (38)

(55)

Since Ct- I (to) is a functional of Clr) it follows from eqn (53) that a(t) must be expressible in
the form of eqn (50).

6. NOLL'S MATERIAL SYMMETRY CONDITION

In Ref. [2J Noll defines a simple material as a material for which the Cauchy stress
matrix a(t) at the generic particle P of body B at time t, referred to the rectangular Cartesian
coordinate system x, is given by~

a(t) = F{g(r)}

where F{g(t)} satisfies the condition

F{g(r)} = F{g(r)S}

(56)

(57)

for all transformations S in a group {S} which is the full unimodular group or a sub-group of
it. He calls the maximal group for which relation (57) is satisfied the isotropy group of the
material.

If the isotropy group is the full orthogonal group or a sub-group of it, the material is said
to be a simple solid. Otherwise it is a simple fluid.

In the case when the isotropy group is the full orthogonal group or a sub-group of it, we
can compare the definition of material symmetry given by eqn (57) with relation (15). It is
evident that they are not equivalent. However, it is easy to show that they become equivalent
if material frame indifference is assumed. Indeed by taking eqn (57) as his starting point and
introducing material frame indifference, Noll[2J obtains relation (20), which, as we have
seen in Section 2, also results from eqn (15) by using material frame indifference.

The physical origin of the discrepancy between eqns (15) and (57) can be easily seen if we
interpret eqn (57) in terms ofbodies Band jj introduced in Section 2. In order to arrive at eqn
(57) we can suppose body jj to be first rotated and translated so that the generic particle P
which initially has vector position X, referred to the system X, becomes coincident with the
corresponding particle P of B, i.e. so that it occupies vector position X referred to coordinate
system x. The body is then subjected to a deformation in which P occupies, at time t, the
vector position x(r) referred to the system x. The Cauchy stress matrices at the
corresponding particles P and P in bodies B and ii, referred to the system x, then have equal
values.

In the case when the isotropy group is the full unimodular group, i.e. when according to
Noll's definition the material is a simple fluid, it is concluded, with material frame
indifference, that a(t) must be expressible in the form

a(t) = G*{Cr{t);p} (58)

where p is the density of the fluid at time t. It is also maintained that any constitutive
equation of the form ofeqn (58) satisfies condition (57) for all unimodular S, i.e. the defining
condition for a simple fluid. However, Noll then argues paradoxically that since the full
orthogonal group is a sub-group of the unimodular group, a simple fluid must be isotropic
and accordingly the functional G* in eqn (58) must satisfy the condition (cf. eqn (52))

(59)

for all orthogonal S.

tStrictly, In Noll's definition a(t) IS assumed to be a hereditary functIOnal ofglr). Ifone WIshes to adhere to thIS
definition, one has merely to suppose that in eqn (56) the deformation gradient matrix is a function of the lapsed time
I-r rather than ofr. The conclusions reached in this section remain unchanged.
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This conclusion disagrees with that in Sections 4 and 5 where it is seen that a(t) for any
isotropic simple material may be expressed in the form ofeqn (41), where G* satisfies relation
(42). (We note that relations (41) and (42) are the same as eqns (58) and (59), respectively, if
the argument p is suppressed in the latter. They become identical in the case when the
material is incompressible.)

In previous papers[5-9J attention has been drawn to the errors in Noll's argument
which led to the conclusions stated above (see, also, the attempted refutation in Refs [10­
12J). A fuller discussion of these will be given elsewhere. Here we merely remark on an
internal inconsistency. Ifany functional G*{C,{'r); p} satisfies relation (57) for all unimodular
S, then it must also satisfy relation (57) for all orthogonal S without the imposition offurther
restrictions. Since, in deriving eqn (58), Noll has required that material frame indifference be
satisfied, any constitutive functional of the form of eqn (58) should satisfy the condition for
the material to be isotropic.

7. THERMAL CONDUCTION IN A RIGID BODY

We will now discuss thermal conduction in a rigid body. We will see that the procedure
described in Section 2 for describing material symmetry and expressing the restrictions on
the constitutive equation due to it can still be used. However, the procedure introduced by
Noll and described in Section 6 is inapplicable.

As in Section 2 we consider two congruent bodies Band B to be cut from a
homogeneous body, and x and xare two rectangular Cartesian coordinate systems similarly
located with respect to Band B. Let Q (= IIQill) and r (= Ilrdi) be the heat flux vector and
temperature gradient, referred to coordinate system x, at a generic particle P ofB, located in
vector position X ( == II X; /I) referred to the system x. Similarly, let Q (= II Q; II) and r (= II f; II)
be the heat flux vector and temperature gradient, referred to the coordinate system x, at a
generic particle P of B, located' in vector posit,ion X(== II Xdl) referred to system X.

Let Q (== II<M) and r (== II tdl) be the heat flux vector and temperature gradient at P
referred to the coordinate system x and let X(== "X,II) be the vector position of P referred to
system x. Then (cf. eqn (1)1)

(60)

and

Q==SQ, r == Sf. (61)

We now suppose that P and Pare corresponding particles of Band B, i.e. X == X. Then,
from eqn (61h

t==sr.

We make the constitutive assumption for body B that

In general Q will be a different function of r. However, if and only if

Q == q,(f)

(62)

(63)

(64)

coordinate systems x and x are said to be equivalent.
As in Section 2 we describe the symmetry of the material by the group of

transformations {S} relating all pairs of the mutually equivalent coordinate systems which
are equivalent to x.

From eqn (63) we have, for body fj

Q == q,(t). (65)
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We now suppose that r = r and obtain from eqns (61), (62), (64) and (65)

(66)

This relation must, of course, be satisfied for all transformations S in group {S}.
However, if we attempt to use the procedure described in Section 6 we obtain for body fj

the same relation (63) as was assumed for body B; i.e. we find no restrictions on t/J. In order to
obtain appropriate symmetry restrictions we would have to introduce deformation
gradients, which are totally irrelevant to the problem, as independent variables in the
constitutive equation for Q, thus allowing the use of material frame indifference.
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